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Abstract

In this paper a hybrid, ®nite element±boundary element method which can be used to solve for particle advection±

di�usion in in®nite domains with variable advective ®elds is presented. In previous work either boundary element, ®nite

element, or di�erence methods were used to solve for particle motion in advective±di�usive domains. These methods

have a number of limitations. Due to the complexity of computing spatially dependent Green's functions, the boundary

element method is limited to domains containing only constant advective ®elds, and due to their inherent formulations,

®nite element and ®nite di�erence methods are limited to only domains of ®nite spatial extent. Thus, ®nite element and

®nite di�erence methods are limited to ®nite space problems for which the boundary element method is not, and the

boundary element method is limited to constant advection ®eld problems for which ®nite element and ®nite di�erence

methods are not. In this paper it is proposed to split the total domain into two sub-domains, and for each of these sub-

domains, apply the appropriate solution method; thereby, producing a method for the total in®nite space, variable

advective ®eld domain. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Numerical methods are used to analyze the advection

and di�usion of particles in complex domains. Although

a number of numerical methods for advection±di�usion

analysis presently exist, most are applicable to problems

with domains of in®nite spatial extent and constant

advective ®elds or to problems with domains of ®nite

spatial extent and variable advective ®elds. Few are

applicable to problems with domain of both in®nite

spatial extent and variable advective ®elds. In this paper,

a method will be presented which can be used to solve

for a subset of advective-di�usion problems with in®nite

spatial domains and variable advective ®elds.

Although much has been written on the numerical

solution of advection±di�usion problems, the in®nite

space problem with non-constant advective ®elds is still

immature. Qiu et al. [1] used a boundary element

method (BEM) for solving an in®nite space advection±

di�usion problem with very high Peclet number. How-

ever, in their analysis, they used the Green's function

associated with a constant advective ®eld; therefore,

their analysis was only valid for problems with constant

®eld characteristics. Similar in form to advection±di�u-

sion, convection±di�usion problems have been studied

extensively in the thermal sciences. Li and Evans [2] used

an exponential variable transformation to construct a

variational principle which lead to a symmetric banded

®nite element sti�ness matrix. As with Qiu et al., they

assumed the convective ®eld was constant; therefore

their solution is limited. Taigbenu and Liggett [3] used

the non-convective Green's function in an integral ap-

proach to model convective domains. This required a

domain integration which when discretized leads to fully

dense large domain matrices. Their method could model

convection±di�usion with non-constant convective
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®elds; however, it was valid only for domains of ®nite

spatial extent.

Liggett [4] gives a very good discussion of the ap-

plicability of the BEM and the extent to which it can be

used for advection±di�usion problems. The main points

discussed included the fact that the BEM, when it can be

applied, is much easier to use than either ®nite di�er-

ences or ®nite elements. Moreover, the method is inex-

pensive in terms of human e�ort (set-up time) and

computer run-time. Another main point was that the

BEM can handle free surfaces more easily than domain

methods; however, ®nite element and ®nite di�erence

methods can be applied to a larger set of applications.

Sponge layers, in®nite elements and other such bound-

ary conditions (see [5]) could be used to extend the ®nite

element solution to in®nite and semi-in®nite domains;

however, many of these conditions are dependent on the

governing equations of motion, and therefore are not

applicable to advection±di�usion problems without

modi®cations.

In conclusion, while problems with either ®nite do-

mains with variable advective ®elds or in®nite domains

with constant advective ®elds have been studied ex-

tensively, problems with in®nite space domains and

variable advective ®elds have been relatively un-

touched. In the following sections, we present a method

which allows for the modeling of particle motion in

in®nite space domains with variable advective ®elds

produced by complex obstacle boundaries. In this

presentation, it is assumed that the total domain can be

partitioned into two sub domains: one sub domain is

in®nite and contains a constant advective ®eld and the

other sub domain is ®nite and contains a variable ad-

vective ®eld. A general rule of thumb for this parti-

tioning is presented. The sub domain with the variable

advective ®elds is modeled using the FEM, and the sub

domain with constant advective ®elds is modeled using

the BEM. There are other methods in the literature,

such as in®nite elements, which may be applicable to

this problem; however, at present, their formulations

are relatively immature for advection±di�usion types of

problems.

2. Equation of motion

The partial di�erential equation for steady state

particle advection and di�usion in an incompressible

medium is well known and is given by

ÿ~V � r/i � ar2/i � 0; �1�

where ~V is the mass-averaged velocity of the medium, a
the di�usivity constant of the medium, and /i is the

species concentration. Notice that if ~V were a variable,

(1) would be a non-linear equation. However, if ~V is a

known quantity then (1) reduces to a linear problem for

/i. Therefore, in this paper, to avoid the complexity of

non-linear analysis, the solution /i for will be decom-

posed into two steps. In the ®rst step, the mean wind

velocity, ~V , is calculated assuming potential ¯ow (this

does not require any knowledge of /i), and in the second

step, the solution ~V is substituted into (1) and /i is

calculated. Since calculation of the ®rst step is usually

straight forward, the rest of this paper will be focused

toward the calculation of the second step.

In general (1) cannot be solved for in closed form;

therefore, numerical methods must be used. To solve (1)

using a FEM or BEM, it must be placed into a weak

formulation. A steady state weak formulation of (1) for

a trial function W isZ
X

W ar2/i

�
ÿ ~V � r/i

�
dX � 0: �2�

Nomenclature

/i concentration of a species i
~V mass-averaged velocity of the medium

a di�usivity of the medium

q average density of the medium

qi density of species i in the medium
~Vi particle velocity of the species i

C surface of control volume

n
*

normal vector

W bases function

XFEM interior domain where FEM is applicable

XBEM exterior domain where BEM is applicable

Cin surface of obstacles

Cout surface shared by XFEM and XBEM

Nin number of nodes on Cin

Nout number of nodes on Cout

U �/i1 ; . . . ;/iN �T
/ij jth /i value at nodes in XFEM

Uin vector of /i values on Cin

Uout vector of /i values on Cout

oUin=on vector of normal derivatives of /i on

Cin

oUout=on vector of normal derivatives of /i on Cout

A;B;C FEM matrices

G Green's function

r
*

0 and r
*

points in XBEM

M;D;G BEM matrices

w velocity potential

u i
*

velocity of wind at in®nity
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In the following section, a FEM and BEM approxima-

tion will be formulated using (2).

3. Discretization of the equation of motion

In this section the equation of motion will be dis-

cretized using a FEM and BEM. In many problems,

obstacles reside in a bounded, ®nite domain of limited

extent, and at distances removed from these obstacles,

the mean velocity, ~V , is practically constant. As will be

shown, a BEM can be used to model particle motion at

locations removed from these obstacles, and a FEM can

be used to model particle motion at locations in the

vicinity of these obstacles. In the following subsections,

a FEM and BEM are used to produce approximations

to the weak form of the equation of motion (Eq. (2)).

These approximations are valid for limited sub domains.

To model the total domain, the two approximations are

then coupled at their domain interfaces.

3.1. A FEM approximation of the equation of motion

Consider the simple domain shown in Fig. 1. In this

domain XFEM is an interior, ®nite sub domain with a

variable advective ®eld that can be modeled by using

FEM, and XBEM is an exterior, in®nite sub domain with

a constant advective ®eld that can be modeled by using

BEM. Let N denote the number of nodes in

XFEM;U � �/i1 ; . . . ;/iN �T be a vector containing the

values of /i at node locations, Cin denote the surface of

the obstacles in XFEM, and Cout denote the exterior sur-

face that bounds XFEM. Let Nin be the number of nodes

on the inner surface, Cin, and Nout be the number of

nodes on the outer surface, Cout. Let Uin be the vector of

nodal values of /i on, Cin, Uout be the vector of nodal

values of /i on Cout, oUin=on be the vector of normal

derivatives of /i on Cin, and oUout=on be the vector of

normal derivatives of /i on Cout.

A relation between U, oUout=on, and oUin=on can be

obtained by a Galerkin approach. Replacing W in (2)

with a ®nite element basis function wj, where

j � 1; . . . ;N , we obtainZ
XFEM

awjr2/i

�
ÿ wj~V � r/i

�
dXFEM � 0: �3�

Applying the ®rst form of Green's theorem to the ®rst

term of (3) gives

ÿ
Z

XFEM

ar/i � rwj

ÿ �
dXFEM �

Z
Cin

awj
o/i

on

� �
dCin

�
Z

Cout

awj
o/i

on

� �
dCin ÿ

Z
XFEM

wj~V � r/i

� �
dXFEM � 0:

�4�
Letting

/i �
XN

j�1

/ij wj; �5�

taking the summation outside the integrals and per-

forming the resulting integrations for each j, one arrives

at a matrix equation of the form

AU� B
oUout

on

� �
� C

oUin

on

� �
� 0: �6�

Fig. 1. A schematic of a hybrid FEM±BEM domain.

B.J. Driessen, J.L. Dohner / International Journal of Heat and Mass Transfer 44 (2001) 2183±2191 2185



Eq. (6) is a FEM formulation for modeling steady state

advection and di�usion in the bounded domain, XFEM.

This formulation is not limited to a constant ~V ®eld

since A is a function of ~V , but is limited to ®nite space

domains and small Peclet numbers. (Extension of the

Galerkin method to advection-dominated problems has

been considered in previous work, such as [6,7].) Since

high wind velocities are not of concern in this paper,

the limitation due to the Peclet number is not of rele-

vance; however, the limitation due to the in®nite spatial

domain is of relevance and is overcome by coupling

this solution to a BEM formulation. In the next sub-

sections, this formulation and its coupling to Eq. (6)

will be discussed.

3.2. A BEM approximation of the equation of motion

The steady state equation of motion can also be ex-

pressed in integral equation form, and from this form, a

BEM can be used to produce a discrete approximation.

The integral representation is derived from (2) and the

Green's function, G. For constant advective ®elds, this

Green's function can be easily computed; however, for

variable advection, calculation of the Green's function

becomes complex. Therefore, the BEM is seldom used to

model particle motion in non-constant advective do-

mains. In this paper, the BEM is used to model particle

motion in only the constant advection portion of the

total domain.

Replacing the basis function W in (2) with the

Green's function G, the weak form becomesZ
XBEM

aGr2/i

�
ÿ G~V � r/i

�
dXBEM � 0: �7�

Applying the divergence theorem and the second form

of Green's theorem to (7) givesZ
XBEM

a/ir2G
�

� /i
~V � rG

�
dXBEM

�
Z

Cout

n
* �
��
ÿ aGr/i � a/irG� /iG~V

��
dCout:

�8�
Since, by de®nition of the Green's function, G, satis®es

ar2G� ~V � rG � ÿd r
*

0

�
ÿ r

*
�
; �9�

where r
*

0 and r
*

are points in XBEM, (8) becomes

c0� r*0�/� r*0� �
Z

Cout

n
* � aGr/i

�
ÿ a/irGÿ/iG~V

�
dCout;

�10�

where c0 is determined by the surface solid angle at r
*

0.

When ~V is not a constant or is not a very simple

function of spatial location, the closed form solution to

(9) is di�cult to calculate; however, when ~V is constant,

the closed form solution for G is well known (see [8]) and

is given by

G r
*
; r
*

0

� �
� 1

4paR
e�ÿu=2a��R��xÿx0��; �11�

where

R � r
*

0

��� ÿ r
*
���; �12�

~V � u i
*

, and u is a constant.

Eq. (10) is an integral representation of the equation

of motion. Since (9) is di�cult to solve for when ~V is not

a constant, this equation of motion is seldom (if ever)

used to model problems with non-constant advective

®elds. Nevertheless, since it contains only a surface in-

tegration, it can easily be used to model in®nite space

problems.

The surface integral in (10) can be approximated

using the BEM. Using shape functions on Cout that are

compatible with the shape functions in (3), one can ar-

rive at a matrix equation of the form

c0Uout �MUout � G
oUout

on

� �
: �13�

From (13), we have

Uout � DU � �c0I ÿM�ÿ1
G

oUout

on

� �
: �14�

The singularity in the derivative of Eq. (11) is included

in the geometric coe�cients, c0, in Eq. (10) as is

commonly done in boundary element analysis. The

values of these coe�cients, c0, can be determined by

the surface's solid angle at the observation point at r
*

0

as mentioned above. The diagonal components of the

matrices M and G in Eq. (13) still contain a singularity

in the integrand; however, this is an integrable singu-

larity. This integration is performed by switching to

polar coordinates and completing the integration in the

radial direction in closed form. The integration in the

angular direction can then be computed numerically

using a Gauss quadrature. In Eq. (14), the inversion of

the matrix �c0I ÿM�ÿ1G can be performed by pro-

ducing an LU factorization of c0I ÿM and then using

back/forward substitution on each column of the ma-

trix G.

3.3. Coupling of the FEM and BEM equations

The coupled N � Nout Eqs. (6) and (14), can be solved

simultaneously to yield the variables U and oUout=on. In

particular with �oUin=on� known, the coupled matrix

equation to be solved is
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A B
D ÿ�c0I ÿM�ÿ1G

� �
U

oUout

on

ÿ �� �
� ÿC oUin

on

ÿ �
0

� �
: �15�

Eq. (15) is mostly sparse with O�N� non-zero entries

except for the relatively small dense sub-matrix in the

lower right associated with the BEM. It can be solved

with an iterative method such as the generalized min-

imum residual method [9] or with a direct sparse

solver. In the problems in this paper, these methods

were used.

4. Numerical results

Fluid ¯ow about obstacles produces non-constant

advective ®elds; however, in many problems, when no

obstacles are present, the advective ®eld is almost

constant. As described in Section 3, advection±di�usion

in ®nite space domains with non-constant advective

®elds can be modeled using FEM while the advection±

di�usion in in®nite domains with constant advective

®elds can be modeled using BEM. Therefore, near

obstacles a FEM is used to model particle motion and

away from obstacles a BEM method is used. In this

section results using this hybrid ®nite element±bound-

ary element method (FEM±BEM) of solution are pre-

sented. When an exact solution exists, it will be

presented with these results for the purpose of quan-

tifying numerical error.

Three problems will be presented in this section. In

the ®rst problem, a point source di�uses particles into an

in®nite domain in the presence of constant wind. A

closed form solution exists for this problem; therefore, a

comparison between the exact and numerical solutions

can be made. In the second problem, the point source is

replaced with a source of spherical geometry, and in the

third problem, the FEM±BEM is used to model particle

motion around a set of realistic complex obstacles.

4.1. Numerical solution for a constant advective ®eld

The ®rst problem is shown in Fig. 2. A constant ¯ux

of particles ¯ow from a point source in an in®nite do-

main. Within the domain a constant wind is blowing.

Therefore, the advective ®eld is constant. The solution

to this problem is well known [8] and therefore, provides

a method to verify the FEM±BEM solution.

Fig. 1 is an illustration of the mesh used to solve this

problem. Due to the concentration singularity resulting

from applying a Dirac Delta function to model the point

source in the FEM domain, the center portion of the

mesh has been removed and the forcing term oUin=on
was calculated from the exact solution and applied on

Cin. The value of /i could then be predicted at points in

XFEM and XBEM.

In this problem the FEM domain is the region

bounded by an inner sphere of radius 1.0 and an outer

sphere of radius 3.0. The wind velocity u was 2.0 and the

di�usivity constant a was 1.0. The strength of the source

was 1.0. Thus the exact analytical solution from [8] is:

/�i�exact � �1=R�e�ÿu=2��Rÿx�. The mesh qualitatively ap-

peared as in Fig. 1. The number of layers of elements (in

the radial direction) was 7, so that there are 8 layers of

nodes, with 250 nodes on each layer. All elements are

standard isoparametric brick Hex8 elements, thus

making the surface elements standard isoparametric

Quad4 elements.

In Fig. 3 the closed form and the numerical solution

are compared. In this ®gure the value of /i is plotted for

a � 1 and various values of h, where h is the angle and a

is the magnitude of the vector in the xy plane shown in

Fig. 2. In this example a � 1, and the vector points to

points in Cin. Fig. 3 is a polar plot with radial distance

equal to /i for various h values. The maximum error

shown in this plot between the FEM±BEM solution and

the exact solution is 2%. Overall the FEM±BEM solu-

tion agreed very well with the exact solution.

Fig. 2. Problem 1 geometry: particles di�use from a point source in a domain with a constant advective ®eld.
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4.2. Numerical solution for a variable advective ®eld

The second problem is shown in Fig. 4. In this

problem particles ¯ow from a spherical source. The

source not only emits particles but also alters the ¯ow of

wind in the domain. Therefore, the advective ®eld is not

constant but varies near the source; however, far from

the source, the wind ¯ow and therefore the advective

®eld is almost constant.

In this problem the FEM domain is the region

bounded by an inner sphere of radius 1.0 and an outer

radius of 3.3. The wind velocity u was 2.0 and the dif-

fusivity constant a was 1.0. The mesh qualitatively ap-

peared as in Fig. 1. The number of layers of elements (in

the radial direction) was 12 so that there are 13 layers of

nodes, with 250 nodes on each layer. All elements are

standard isoparametric brick Hex8 elements, thus

making the surface elements standard isoparametric

Quad4 elements.

An exact solution for the ¯ow of wind around a

spherical obstacle exists [10]. If w is the mean velocity

potential, then for this obstacle

w � ux� ub3x
2a3

; �16�

where b is the radius of the obstacle, a the distance from

the center of the obstacle, ~V � rw, and x � a � cos h as h
and a are de®ned in Fig. 4. The di�erence between u i

*

,

Fig. 4. Problem 2 geometry: particles di�use from a spherical source in a domain with a non-constant advective ®eld, (�) 2750 DOF

mesh, (�) 3250 DOF mesh.

Fig. 3. Problem 1 results: a comparison of the FEM±BEM solution to the exact solution, (�) FEM/BEM solution, (±) exact solution.
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the velocity at in®nity, and the true velocity at any point

in XFEM or XBEM decays as b3=a3 where the biggest dif-

ference between these velocities occurs along the x-axis.

For the true velocity to be within 2% of u i
*

; a � 3b. In

other words, for this problem, the ®nite element mesh

must be about two obstacle radii thick or must have a

radius three times that of the obstacle for the solution to

be accurate.

The mesh used to model this problem is also illus-

trated in Fig. 1. The boundary conditions for a uniform

particle ¯ux were applied on Cin, and the resulting

coupled equation (15) were used to solve for U and

oUout=on. A polar plot of /i versus h on the circle a � 1

is given in Fig. 5 for two di�erent mesh densities. As seen

in this ®gure, for these mesh densities, the solution has

converged.

4.3. Numerical solution for realistic obstacles

A more realistic problem is illustrated in Fig. 6. A set

of buildings block the ¯ow of wind in an in®nite space

domain. In proximity to these buildings is a particle

source distribution. This distribution emits particles into

the domain which both di�use through the wind and are

carried by the wind around and over the buildings. The

buildings are assumed to be impervious to both the

di�usion of the particles and to the ¯ow of the wind.

Using the FEM±BEM solution developed in this

paper, this complex problem was solved. First the ¯ow

®eld around the buildings was numerically determined

using standard potential theory. Speci®cally, we used the

same FEM±BEM approach presented in this paper with

u � 0. The wind potential is the solution of this partial

di�erential equation with a di�erent set of boundary

conditions. We then calculated the gradient of the po-

tential to determine the velocity ®eld around the obsta-

cles.

To solve the advective-di�usion problem, the domain

was divided into sub-domains with almost constant and

variable advective ®elds. Using results from Section 4.2,

the radius of the outer surface of the FEM domain was

determined by de®ning a sphere that enclosed all ob-

stacles, and by specifying the radius of this outer surface

to be at least three times the radius of the enclosing

sphere. This three radii approximation is a general rule

of thumb for estimating the location of sub-domain

boundaries. The BEM method was applied to the con-

stant advective ®eld sub-domain and the FEM method

was applied to the variable advective ®eld sub-domain.

The two methods were then coupled and a total advec-

tive-di�usion solution was solved for. A resultant par-

ticle concentration plot is shown in Fig. 7. In this ®gure

the wind velocity, u, was 2.0 and the di�usivity constant

a was 1.0.

5. Conclusions

In this paper, a hybrid FEM±BEM of solution was

presented for a set of advection±di�usion problems.

For many problems, the advective ®eld is variable

close to obstacles in the domain, but at distances

removed from those obstacles, the ®eld is almost

constant. By placing ®nite element meshes around

Fig. 5. Problem 2 results: a plot of particle concentration at locations in the xy plane for a 2750 and 3250 DOF mesh.
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obstacles where the advective ®eld varies and by us-

ing the BEM at locations removed from these obsta-

cles, one can solve a set of advective-di�usion

problems which are seldom addressed in the present

literature.
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